Apr 16, 2007 22:40
\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}
\Delta t' = \gamma \left(\Delta t - \frac{v \Delta x}{c^{2}} \right)
\Delta t' = \gamma \left(\Delta t - \frac{v \Delta x}{c^{2}} \right)
\Delta x' = \gamma (\Delta x - v \Delta t)\,
\Delta t = \gamma \left(\Delta t' + \frac{v \Delta x'}{c^{2}} \right)
\Delta x = \gamma (\Delta x' + v \Delta t')\,
E = \gamma m c^2 \,\!
\vec p = \gamma m \vec v \,\!
\gamma = \frac{1}{\sqrt{1 - \beta^2}}
E_{rest} = m c^2 \,\!