Лунная механическая катапульта Оберта

Jul 10, 2015 17:24

По предложению Оберта, одна из точек либрации могла бы быть использована как своего рода «склад», в котором накапливались бы необходимые материалы. Эта идея Оберта имеет своим источником его мысль об использовании ресурсов Луны для нужд человечества. По его мнению, на Луне можно было бы развить настоящую промышленную деятельность. Это, кроме того, имело бы глубокий экологический смысл, так как потенциально способствовало бы освобождению Земли от экологически вредных производств. С помощью энергетических установок, работающих на принципе использования солнечной энергии, можно будет, по мнению Оберта, осуществить некоторую аналогию доменного процесса и использовать добываемую из глубин лунного грунта руду для получения нужных материалов. Из этих материалов следует изготовлять элементы конструкции, которые необходимы для строительства различных больших сооружений (в том числе и для обитаемых станций), упрощающих освоение космического пространства человечеством. Если бы доставлять в космос все необходимое с Земли, то это было бы много дороже. В точке либрации можно было бы постепенно накапливать все нужное для строительства некоторого объекта (возможно, путем складывания их на «складе», т.е. путем их временного и простого соединения), чтобы затем собрать его. Собранные конструкции можно было бы доставить в нужную область космического пространства при помощи электрореактивных аппаратов, построенных из материалов, добытых на Луне и использующих в качестве рабочего тела для движителей также лунные материалы. Эти собранные из лунных материалов космические станции можно было бы использовать для наблюдения Земли и происходящих на ней процессов, например для сбора экологически важной информации. Сооружение с использованием таких «складов» больших телескопов много дало бы для познания законов, управляющих Вселенной, и тому подобное. Кстати, для складывания опасных радиоактивных отходов, которыми не следует загрязнять Землю и околоземное пространство, можно было бы тоже воспользоваться точкой либрации системы Луна-Земля. Ведь эта точка столь же удалена от Земли как и Луна.

Упрощение доставки заготовленных элементов конструкций в точку либрации системы Луна-Земля и удешевление этой доставки возможно с помощью специальных метательных устройств, позволяющих обойтись без ракетной техники. Сказанное особенно важно, если реактивный принцип реализуется в виде электрореактивных движителей, развивающих лишь малые тяги. Эти движители рационально использовать после того, как перемещаемое тело уже развило первую космическую скорость, т.е. для последующего разгона, для первоначального же разгона эти движители непригодны. Как известно, первая (или круговая) космическая скорость тем больше, чем больше масса тела, с которого происходит старт. Для Земли эта скорость равна 7,9 км/с, для Луны это число падает до значения 1,6, а для «склада» в точке либрации (учитывая малость суммарной массы собранных там материалов) будет пренебрежимо малой. Это и делает возможным использование электрореактивных движителей для работ на «складе» и для последующей доставки собранного сооружения в нужную область космического пространства, но совершенно непригодным для доставки материалов с Луны на «склад».

Метательное устройство, которое предлагает Оберт, первоначально представляется предельно простым: доставляемый груз помещается на некоторой платформе, которая разгоняется по рельсам, эта платформа использует для разгона электроэнергию, получаемую на Луне. После того как платформа разогналась, она резко тормозится, доставляемый груз по инерции продолжает свое движение, срывается с платформы и улетает в космическое пространство. Само собою разумеется, что рельсовый путь имеет нужное направление, а последний его участок - и нужный наклон к горизонту. Все это сравнительно легко осуществить на Луне, поскольку Луна является без атмосферной планетой и космическое пространство начинается непосредственно у ее поверхности.

Принципиальные трудности начинаются тогда, когда более внимательно рассматривается работа колес этой разгонной тележки. Если колеса бегут по рельсам, то наибольшую скорость платформа получит не тогда, когда она будет крепиться к подшипникам осей колес (как в обычных земных экипажах всех типов - колясках, автомобилях, велосипедах и аналогичных устройствах), а тогда, когда она будет свободно лежать на них наподобие того, как происходит у катков, используемых при перемещении больших грузов. В этом случае скорость перемещения платформы будет в два раза выше окружной скорости колеса. Следует напомнить, что окружной скоростью колеса называется линейная скорость внешних точек его обода (в предположении неподвижности оси), ее легко вычислить как произведение круговой скорости колеса (пропорциональной числу оборотов) на удаление этих внешних точек от оси вращения колеса (радиус колеса). При разгоне радиус естественно, не меняется, а увеличивается угловая скорость колеса (число его оборотов в единицу времени). Известно, однако, что при вращении развиваются центробежные силы, которые будут стремиться разорвать колесо. Задача о предельно-допустимой скорости вращения колеса, после достижения которой колесо разрушается, т.е. предельной с точки зрения прочности, давно решена. Соответствующая формула оказывается удивительно простой: квадрат допустимой окружной скорости должен быть меньше отношения допустимого напряжения материала на растяжение к его удельной плотности. Замечательным в этой формуле является то, что из кинематических и геометрических параметров колеса в нее входит только окружная скорость (а не число оборотов и радиус колеса). Это позволяет сформулировать следующее утверждение: предельно возможная скорость разгона платформы не может превышать удвоенного значения предельно-допустимой из соображений прочности окружной скорости колеса. Из сказанного очевидно, что никакие конструктивные изменения, например, казалось бы наиболее естественное - увеличение или уменьшение радиуса колеса - не могут изменить значения наибольшей возможной скорости разгона тележки.
Предельно-допустимые значения окружной скорости колеса легко вычисляются по таблицам свойств материалов, из которых изготовлено колесо. Для различных марок сталей эта скорость колеблется от 211 до 340 м/с, а для дюралюминия она равна 290 м/с (здесь меньшая прочность скомпенсирована меньшим удельным весом). Для особо прочных сталей Оберт считает возможным принять эту величину равной 390 м/с. Если остановиться на последнем значении, то можно утверждать, что максимальная скорость, которую может развить разгонная платформа, будет ограничена значением 780 м/с. Однако для Луны (на поверхности которой предполагается разгонять платформу) эта скорость составляет примерно половину свойственной Луне первой космической (круговой) скорости, а это означает, что разогнанный с помощью тележки груз не оторвется от Луны, а упадет на ее поверхность. Оберт указывает, что для доставки груза в точку либрации нужен разгон до 2320 м/с, а для того чтобы груз опустился на Землю (если это необходимо для других целей) до 2540 м/с. По порядку величин эти скорости тележки втрое превышают предельно-достижимые. Обход этого, казалось бы абсолютно непреодолимого препятствия, Оберт считает возможным осуществить при помощи предложенного устройства, которое он назвал «умножитель скоростей» (Cesch-windigkeits-Multiplikator) [8].

Основная идея, лежащая в фундаменте умножителя скоростей, может быть описана следующим образом. Пусть по горизонтальной поверхности Луны бежит по рельсам тележка, однако в отличие от обычных тележек не только нижние, но и верхние части колес существенным образом используются для получения нужного характера разгона. Если нижние части колес движутся по рельсам, лежащим на поверхности Луны, то на верхние части тех же колес опирается некая плоская и длинная платформа. Эта платформа может, как уже говорилось, быть в рассматриваемом примере разогнана до 780 м/с. Если на этой платформе укрепить рельсы, на них поставить аналогичную тележку с платформой и разгонять их по движущимся рельсам, то верхняя платформа сможет тоже разогнаться до 780 м/с относительно движущихся рельсов, опирающихся на нижнюю тележку. Но это означает, что по отношению к поверхности Луны верхняя платформа сможет развить скорость 780 + 780 = 1560 м/с. Если повторить этот прием, то третья от поверхности Луны платформа сможет развить относительно этой поверхности скорость 780 + 780 + 780 = 2340 м/с, т.е. скорость, достаточную для того, чтобы бросить разогнанный груз в точку либрации (для доставки этим методом груза на Землю в рассматриваемом примере потребуется четвертая тележка с платформой).
Конечно, выше была изложена лишь идея умножителя скоростей. «Длинные платформы», опирающиеся на колеса столь же длинных тележек, проще всего могут быть конструктивно осуществлены, если у них не будет «начала» и «конца», например, в виде поставленных друг на друга кольцеобразных рельсовых систем тележек с платформами. При этом радиус окружности рельсовых путей должен быть достаточно большим. Другим конструктивным решением той же задачи может быть оформление рельсовых путей, тележек и платформ в виде замкнутых лент, наподобие того как это сделано в эскалаторах станций метрополитена. Не вдаваясь в подробности, приведем пример разгонной метательной системы для забрасывания грузов в точку либрации с использованием второй из описанных выше схем, которую рассчитал Оберт.

Общая длина метательного комплекса на поверхности Луны имеет порядок 130 км. Начало трассы лежит на глубине 6 км, здесь начинается горизонтальный разгон на участке длиной 60 км. После этого, на длине примерно в 50 км происходит продолжение разгона с одновременным изменением наклона трассы от горизонтального до характеризуемого углом подъема в 16°. Длительность разгона по поверхности Луны для полета к точке либрации имеет порядок 70 с, а ускорение выбрано таким, чтобы перегрузка имела порядок четырех. Это сделано для того, чтобы метательное устройство могло бы «стрелять» и пилотируемыми объектами (перегрузки при разгоне для полета к Земле получаются несколько большими, порядка пяти). В момент »отрыва» груза от платформ происходит ее резкое торможение (перегрузка достигла бы 15, но ведь она не касается груза, а лишь платформы и поэтому для сохранности груза роли не играет).
Все описанное здесь весьма напоминает пушку Жюля Верна, с которой связано возникновение у Оберта интереса к космонавтике. Но теперь, в отличие от Жюля Верна, все строго рассчитано и обосновано. »Пушка» Оберта оказалась реализуемой при длине разгонного участка всего в 110 км (а не 3000 км, которые потребовались бы на Земле), вследствие того, что круговая скорость у Луны в 5 раз меньше, чем у Земли. Кроме того, из приведенных данных видно, что Оберт не забыл, в отличие от Жюля Верна, о необходимости ограничить ускорение груза, а с ним и перегрузку. Если «грузом» не будет являться человек, то перегрузки можно существенно увеличить, и в связи с этим заметно сократить размеры метательного комплекса.

Как и всегда, у Оберта проработка проведена достаточно детально, в частности, показаны различные полезные конструктивные детали, описана электромагнитная система разгона и другие подобные детали. Важным является то, что метательное устройство расходует лишь энергию, но никак не массу. Строительство столь впечатляющего метательного комплекса упрощается тем, что одна и та же масса весит на Луне в шесть раз меньше, чем на Земле. Оценивая значение выдвинутого им предложения, Оберт особенно подчеркивает, что необходимая для приведения в действие столь мощного метательного устройства энергия, может быть получена от Солнца, которое светит на Луне 354 часа в месяц, причем светит гарантированно (нет облаков) и с интенсивностью не известной нигде на Земле. При реализации этого предложения резко падают расходы, связанные с доставкой грузов с Луны в космос и, если надо, с Луны на Землю, а это может окупить расходы, связанные с созданием достаточно сложного метательного комплекса на Луне. По довольно приближенным оценкам транспортные расходы снизятся (по сравнению с обычной сегодня ракетной техникой) в 1000 раз. Предложения такого рода будут тем более актуальны, чем ближе будет время, когда человечество начнет осваивать Луну и околоземное (вплоть до Луны) космическое пространство для практических целей. Этот пример убеждает еще раз в том, что как и в далекие 20-е годы, Оберт смотрит далеко вперед, стремясь указать человечеству пути решения проблем, которые могут перед ним встать. Интересно отметить, что Оберт не запатентовал свой умножитель скоростей, предлагая всем желающим воспользоваться его идеей и разрабатывать ее дальше.

Источник

Еще раньше К.Циолковский рассмотрел такое же многоэтажное кольцевое сооружение для малых планет. А в результате развития идей Циолковского-Оберта привели к проекту электромагнитной катапульты на Луне и в итоге к проектам лунного Орбитрона. В том числе варианта Орбитрона, который использует "эффект Оберта" для извлечения потенциальной энергии системы Земля-Луна и утилизации ее для перекачки лунного вещества в космос.


Оберт, moon one, инфо, orbitron, инновации, moon, катапульта, нешаблонное мышление

Previous post Next post
Up