Начало:
4997;
4998 5. Эволюционный сценарий
Оптическая асимметрия могла произойти вполне эволюционным путем. Причем в традиционном понимании смысла этого термина, т.е. эволюция, идущая через случайную изменчивость и естественный отбор наиболее жизнеспособных и наиболее приспособленных мод. Отбор как постоянный и монолитный рост ценности, функциональной значимости информации, что в сущностном плане означает развитие, усложнение семантики.
Отмеченное выше стремление рацематов к равновесию и стабильности отнюдь нельзя расценивать как нечто абсолютное и неизменное. Равновесие, в котором пребывает рацемическая система, открытая для потоков энергии из окружающей среды и подверженная другим внешним воздействиям, на самом деле всегда носит динамический характер. В ней происходят флуктуации - игра и противоборство рацемизации и преимущества того или иного оптического антипода, их взаимопревращение. Малые резонансные возмущения в определенный момент неустойчивости системы могут разрастаться в макроструктуру вплоть до полного доминирования того или иного изомера. Особенно при дополнительном воздействии внешних асимметризирующих факторов (поляризованный свет, электрическое, магнитное, гравитационное и другие физические поля, конвекционные потоки на границе раздела фаз твёрдого, жидкого и газообразного состояния вещества и т.п.), что научно подтверждается многочисленными экспериментальными данными. В результате поначалу обратимая рацемическая система переходит, таким образом, хотя бы на определенное время в достаточно стабильное состояние с частично (или даже полностью) нарушенной зеркальной симметрией.
В качестве разрушителей зеркальной симметрии могли выступать в далеком прошлом, прежде всего, объекты минерального происхождения, обладающие в силу особых своих качеств каталитической активностью, например, асимметрические (левовращающие и правовращающие) кристаллы кварца. И, стало быть, химический элемент кремний (не обязательно в чистом виде), который мог выступить в качестве возможного первичного фактора линейной полимеризации органических молекул, вполне мог оказать углероду ещё и вторую, не менее важную, услугу в грядущем конструировании им жизни. Сочетание двух возможностей в одном «силикатном гене», по логике, имело бы для природы несомненные «экономические» преимущества.
Тем самым кремний как химический элемент (содержание которого в современной земной коре составляет, кстати, 29,5% от её массы против 2,3;10-2 % углерода), выполнил тем самым свою великую историческую миссию в качестве предшественника главному элементу нынешней жизни - углероду.
При всем этом нарушение оптической симметрии вполне могло происходить в мягком и спокойном режиме, без каких-либо молниеносных катастроф и революционных потрясений, словом, без всякого «B». И необязательно сразу в глобальных масштабах. Полимерным органическим молекулам, формировавшимся где-то в спонтанно возникавшей оптически активной среде или в стабильных минеральных системах (силикатные глины типа смектитов), ничего не оставалось, как включать в свой состав (в качестве строительного материала) только правовращающие или только левовращающие мономеры. Они просто вынуждены были это делать в отсутствие выбора в конкретных локальных условиях! Первичное образование таких асимметричных органических полимеров, несомненно, было делом случая и вряд ли имело поначалу какое-либо существенное значение для "мировой революции" в сторону жизни.
Однако именно такие молекулы оказались наиболее подходящими для последующей органической эволюции, что и показал в дальнейшем их естественный отбор (первопричина всякой самоорганизации, метод методов, порождённый самой природой), который при всей своей стихийности шёл уже направленно. Включение только одного изомера из двух послужило главной предпосылкой для стабилизации и выживания теперь уже куда более сложных органических молекул, их последующего воспроизведения и накопления в определенной среде, а также дальнейшего структурного и функционального усложнения. Такие молекулы приобретали преимущества в отношении скорости реакционных процессов и потенциальной возможности к реплицированию (рацематы полностью проигрывали им в этом отношении). Процесс их направленного отбора мог протекать, в принципе, ещё до зарождения жизни, то есть в предбиологический период, где-то в пограничной зоне гидросфера-литосфера.
Другое дело, мы до сих пор не знаем, почему жизнь выбрала для аминокислот левые антиподы, а для сахаров - правые. Почему именно так, а не иначе? Думается, однако, что и этот выбор был сделан неспроста и что квантово-химический подход рано или поздно даст ответ на этот вопрос.
Есть, однако, и другие, не менее интригующие загадки. В живой природе всё-таки отмечено, в порядке исключения, наличие D-аминокислот, находящихся в свободном состоянии или в составе коротких пептидов. Они выявлены, например, в клеточных стенках бактерий сибирской язвы (D-Glu), а также в составе пептидов кожи одного из видов южноамериканских лягушек, в которых найден D-Ala. И среди сахаров, оказывается, есть исключения. Это L-арабиноза бактерий, L-рамноза и L-сорбоза растений. Эти чрезвычайно интересные факты почему-то ограничиваются в специальной научной литературе главным образом их констатацией и остаются без внимания общебиологических исследований, тогда как их объяснение могло бы пролить дополнительный свет на саму проблему жизни.
Как бы то ни было, эти факты свидетельствуют (причем с неожиданной стороны) не в пользу гипотезы революционного сценария разрушения оптической симметрии - "Biologikal Big Bang"- в контексте происхождения жизни.