Прогнозирование на основе ретроспективного анализа

Feb 04, 2013 16:08



Как-то, уже давненько, зашел у нас спор с одним из довольно известных специалистов нашего цеха на тему пользы ретроспективного анализа для Конкурентной разведки. Мы (точно помню, что был не одинок) отстаивали точку зрения, что это дело весьма полезное и нужное, оппонент, несмотря на наше интеллектуальное численное преимущество, стоял на своём и полагал, что ретроспективный анализ - дело пустое и практического применения в Конкурентной разведке не находит.

Недавно Корпорация Зла, совместно с британскими израильскими учёными подкинули наглядный пример пользы ретроспективного анализа. И хоть речь в заметке идёт о прогнозировании стихийных бедствий, никто ещё взаимное влияние природного на бизнес и политику не отменял. Да и, как справедливо замечено, это пока первый опыт и применение корреляций для прогнозирования вполне может быть полезен в разных сферах.

Конечно, чтоб получить от такого прогнозирования значимую пользу для своего бизнеса или, опять же, политики - нужно быть крупным игроком - очень уж большие массивы данных приходится обрабатывать и прогнозируемые события выходят масштабными. Игроком, если не планетарного, то, хотя бы, континентального масштаба. Ну, может национального. Регионального - тоже пойдёт, но фарта можно и не дождаться, так что - чистая лотерея. Опять же, что случись, игроки покрупнее обскачут - у них и возможности получить информацию больше, и предложение будет лучше. Так что, владельцам сети ларьков ООО «Ромашка» - просьба не беспокоиться.




Исследователи разработали программное обеспечение, которое предсказывает, когда и где могут возникнуть вспышки болезней, основываясь на двадцатилетнем архиве статей New York Times и других интернет-данных, сообщает Mashable. Авторами разработки являются Microsoft и Технион - Израильский технологический институт.

Система показывает поразительные результаты при тестировании на исторических данных. Например, сообщения о засухе в Анголе в 2006 году вызвали предупреждение о возможной вспышке холеры в стране, потому что предыдущие события научили систему, что вспышки холеры более вероятны в годы после засухи. Второе предупреждение о холере в Анголе было вызвано новостями о бурях в Африке в начале 2007 года; менее чем через неделю появились сообщения о том, что в регионе действительно распространилась холера. В подобных испытаниях, связанных с прогнозированием болезней, насилия и значительного числа смертей, предупреждения системы были правильными в 70-90 % случаев.

В будущем система может помочь гуманитарным организациям более эффективно бороться со вспышками заболеваний или другими проблемами, говорит Эрик Хорвиц, учёный и содиректор Microsoft Research. Хорвиц проводил исследование в сотрудничестве с Кирой Радински, исследователем из Техниона - Израильского технологического института.

По словам Хорвица, нынешние показатели эффективности системы достаточно хороши, чтобы предположить, что её улучшенный вариант можно будет использовать в реальных условиях. Система была разработана с использованием архива новостей New York Times за 22 года - с 1986 по 2007 год, а также использует данные из Сети, чтобы узнать о том, что приводит к заметным событиям.

«Одним из источников, который мы нашли полезным, была DBpedia, в которой с помощью краудсорсинга представляется информация из Википедии в структурированной форме», - говорит Радински. «Мы можем понять или увидеть расположение мест в новостных статьях, сколько люди там зарабатывают, и даже информацию о политике». Среди других источников были WordNet, который помогает системе понимать смысл слов, и OpenCyc, база данных общих знаний.

Все они дают ценный контекст, который не доступен в новостях, и который необходим, чтобы выяснить общие правила, какие события предшествуют другим. Например, система может вывести связь между событиями в городах Руанды и Анголы, основываясь на том, что обе страны в Африке, имеют аналогичные ВВП, и другие факторы. Такой подход привёл систему к выводу, что в прогнозировании вспышек холеры следует учитывать местоположение страны или города, долю водной поверхности, плотность населения, ВВП, и была ли засуха в предыдущем году.

Сама идея о поиске путей для прогнозирования вспышек болезней не нова, равно как и концепция интеллектуального анализа данных для прогнозирования, но масштаб этого проекта потенциально делает его очень полезными. Поскольку система в состоянии успешно проводить корреляцию между событиями и достаточно обобщить данные, чтобы сделать результат полезными, она может быть применена в самых разных сферах.

Источник

прогнозирование, data mining, открытые источники, информационно-аналитическая работа, Интернет-разведка, Интернет, деловая разведка, СМИ, Александр Кузин, аналитика, конкурентная разведка, osint, бизнес-разведка, ретроспективный анализ, коммерческая разведка

Previous post Next post
Up