Заморочены.

Aug 11, 2013 10:55


Отрывок из статьи. Вот как формируется картина мира.
----------------------------
Вот как формулируется теорема Байеса:

p(A|X) = p(X|A) p(A) / p(X).

Возьмем некоторое явление (A), о котором мы хотим узнать, и наблюдение (X), которое дает нам какие-то сведения об А. Теорема Байеса говорит нам, насколько увеличится наше знание об А в свете новых сведений X. Нам незачем вникать в детали этого уравнения. Главное - что это уравнение дает нам именно ту математическую формулу убеждений, которую мы искали. Убеждению в данном случае соответствует математическое понятие вероятности. Вероятность позволяет измерить, в какой степени я убежден в чем-то. Если я в чем-то совершенно уверен (например, в том, что утром взойдет солнце), вероятность равна единице [в форме уравнения это можно выразить так: p(взойдет солнце) = 1]. А если я совершенно уверен, что что-то никогда не случится, вероятность равна нулю [p(Крис Фрит выиграет конкурс “Евровидение”) = 0]. Большинство наших убеждений не так тверды и занимают промежуточное положение между нулем и единицей [p(поезд, на котором я езжу на работу, опоздает) = 0,5]. И эти промежуточные убеждения постоянно изменяются по мере того, как мы получаем новые сведения. Прежде чем ехать на работу, я уточню положение поездов Лондонского метро в интернете, и эти новые сведения изменят мое убеждение о вероятности опоздания поезда (хотя и ненамного…).



Рис. 5.5.Могила преподобного Томаса Байеса
Томас Байес похоронен на кладбище Банхилл-Филдс в центре Лондона. В XVIII веке на этом кладбище хоронили нонконформистов13, но теперь это общественный парк. Могила была отреставрирована в 1969 году, на средства “статистиков со всего мира”.
Источник: Фото профессора Тони О’Хагана из Шеффилдского университета.

Теорема Байеса показывает, насколько именно изменится мое убеждение относительно A в свете новых сведений X. В приведенном выше уравнении p(A) - мое первоначальное, или априорное, убеждение об А до поступления новых сведений X, p(X|A) - вероятность получения сведений X в случае, если A действительно будет иметь место, а p(A|X) - мое последующее, или апостериорное, убеждение об А с учетом новых сведений X. Все это станет понятнее на конкретном примере.
Вас, вероятно, удивило, почему это Брэдли Карлин, профессор здравоохранения из Университета Миннесоты, так интересуется теоремой Байеса. Дело в том, что здравоохранение - одна из тех многих областей, где теорема Байеса находит свое применение.

Рассмотрим проблему рака груди14. Обратимся к частному случаю, связанному с эффективностью массовых обследований. Мы знаем (это наше априорное убеждение), что к 40 годам у 1% женщин развивается рак груди (p(A) = 0,01). Кроме того, у нас есть хороший метод выявления рака груди - маммография (этот метод дает нам новые сведения). Результат маммографии будет положительным у 80% женщин с раком груди (p(X|A) = 0,8) и лишь у 9,6% женщин без рака груди (p(X|~A) = 0,096). Таковы вероятности получения наших сведений в случае, если наше убеждение истинно. Судя по этим цифрам, кажется очевидным, что регулярные обследования на предмет наличия рака груди - вещь хорошая. Итак, если мы обследуем всех женщин, то какова будет среди тех, у кого обследование даст положительный результат, доля тех, у кого действительно будет рак груди, то есть каково будет значение p(A|X)?

Учитывая, что этот метод кажется хорошим, каково будет ваше убеждение относительно женщины, для которой только что получен положительный результат маммографического обследования на рак груди? Большинство людей сказали бы, что у нее, скорее всего, рак груди. Но применение теоремы Байеса показывает, что это мнение ошибочно. Мы можем легко убедиться в этом, если на время забудем о вероятностях. Вместо этого давайте рассмотрим 10 000 женщин в возрасте 40 лет и старше.

Еще до обследования эти 10 000 женщин можно мысленно разделить на две группы:

Группа 1: 100 женщин с раком груди;
Группа 2: 9 900 женщин без рака груди.
Группа 1 - этот тот 1% женщин, у которых развился рак: p(A)

После обследования женщин можно разделить на четыре группы:

Группа А: 80 женщин с раком груди и положительной маммографией;
Группа Б: 20 женщин с раком груди, но с отрицательной маммографией.
Группа А - это те 80% женщин с раком груди, у которых его выявляет маммография: p(X|A)
Группа В: 950 женщин без рака груди, но с положительной маммографией;
Группа Г: 8 950 женщин без рака груди и с отрицательной маммографией.
Группа В - это те 9,6% женщин, у которых нет рака груди, но результат маммографии положительный: p(X|~A).

Итак, результат обследования оказался положительным у 950 женщин, у которых нет рака груди, и только у 80 женщин, у которых есть рак груди. Чтобы ответить на вопрос “Какова доля женщин с раком груди среди тех, у кого результат маммографии положительный?”, мы разделим число женщин в группе A на суммарное число женщин в группах А и В (то есть на общее число женщин с положительной маммографией). Это даст нам ответ 7,8%. Иными словами, более 90% женщин, у которых маммография дает положительный результат, в действительности не больны раком груди. Несмотря на то что маммография - хороший метод выявления рака груди, теорема Байеса говорит нам, что получаемые с ее помощью сведения сравнительно малоинформативны15. Проблема возникает оттого, что мы обследуем сразу всех женщин в возрасте 40 лет и старше. Для женщин этой большой группы априорное ожидание рака весьма невелико. Теорема Байеса показывает, что результаты маммографии будут намного информативнее, если обследовать “группы риска”, например женщин, у которых в семье были случаи рака груди.

Теперь вам уже, наверное, кажется, что вы узнали больше, чем нужно, о том, как на деле работает теорема Байеса. Какое же все это имеет отношение к решению проблемы познания окружающего мира?

......

Как байесовский мозг может создавать модели мира?

Но есть и еще один аспект теоремы Байеса, который даже важнее для понимания того, как работает наш мозг. В формуле Байеса два ключевых элемента: p(A|X) и p(X|A). Величина p(A|X) говорит нам, насколько мы должны изменить наше представление об окружающем мире (A) после получения новых сведений (X). Величина p(X|A) говорит нам, каких сведений (X) мы должны ожидать, исходя из нашего убеждения (A). Мы можем взглянуть на эти элементы как на средства, позволяющие нашему мозгу делать предсказания и отслеживать ошибки в них. Руководствуясь своими представлениями об окружающем мире, наш мозг может предсказывать характер событий, которые будут отслеживать наши глаза, уши и другие органы чувств: p(X|A). Что же происходит, когда такое предсказание оказывается ошибочным? Отслеживать ошибки в подобных предсказаниях особенно важно, потому что наш мозг может использовать их для уточнения и улучшения своих представлений об окружающем мире: p(A|X). После внесения такого уточнения мозг получает новое представление о мире и может снова повторить ту же процедуру, сделав новое предсказание о характере событий, отслеживаемых органами чувств. С каждым повтором этого цикла ошибка в предсказаниях уменьшается. Когда ошибка оказывается достаточно маленькой, наш мозг “знает”, что творится вокруг нас. И все это происходит так быстро, что мы даже не осознаём выполнения всей этой сложной процедуры. Нам может казаться, что представления о том, что творится вокруг, даются нам легко, но они требуют неустанного повторения мозгом этих циклов предсказаний и уточнений.

целиком: http://postnauka.ru/longreads/8678

Иллюзия, Матчасть

Previous post Next post
Up